Search results for "South pole"

showing 6 items of 6 documents

First year performance of the IceCube neutrino telescope

2006

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

Astroparticle physicsPhysicsPhotomultiplierMuonPerformanceDetectorAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsIceCube Neutrino ObservatoryAmandaIceCubeDetectionData acquisitionFirst yearAmanda; Detection; First year; IceCube; IceTop; Neutrino; Performance; South poleNeutrinoSouth poleAstronomiaIceTopNeutrinoCherenkov radiation
researchProduct

New limits on Early Dark Energy from the South Pole Telescope

2011

We present new limits on early dark energy (EDE) from the cosmic microwave background (CMB) using data from the WMAP satellite on large angular scales and South Pole Telescope (SPT) on small angular scales. We find a strong upper limit on the EDE density of Omega_e < 0.018 at 95% confidence, a factor of three improvement over WMAP data alone. We show that adding lower-redshift probes of the expansion rate to the CMB data improves constraints on the dark energy equation of state, but not the EDE density. We also explain how the small-scale CMB temperature anisotropy constrains EDE.

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCMB cold spotUniverseCosmologySouth Pole TelescopeSpace and Planetary Science0103 physical sciencesDark energyBaryon acoustic oscillations010303 astronomy & astrophysicsmedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Measurement of acoustic attenuation in South Pole ice

2010

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

Acoustic attenuation; Acoustics; Ice; Neutrino astronomy; South Pole[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]010504 meteorology & atmospheric sciences[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]iceFOS: Physical sciencesAetiology screening and detection [ONCOL 5]Lambda01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrum0103 physical sciencesacousticsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesPhysicsSouth Pole010308 nuclear & particles physicsbusiness.industryAttenuation[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TransmitterAttenuation lengthAstronomy and AstrophysicsGeodesy004AmplitudeAttenuation coefficientddc:540NeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAcoustic attenuationinfo:eu-repo/classification/ddc/004acoustic attenuation
researchProduct

Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

2013

The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good perfo…

AstrofísicaPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsCosmic microwave backgroundchemistry.chemical_elementdouble beta decayFOS: Physical sciences7. Clean energy01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicssymbols.namesakeHigh Energy Physics - Experiment (hep-ex)XenonHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesPlanck010306 general physicsPhysicsCosmologiaTime projection chamber010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsneutrino masses from cosmologyInstrumentation and Detectors (physics.ins-det)3. Good healthHigh Energy Physics - PhenomenologyMAJORANASouth Pole Telescopechemistry13. Climate actionsymbolsNeutrino
researchProduct

Measurement of South Pole ice transparency with the IceCube LED calibration system

2013

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSouth Pole icePhoton progagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubePhysics::GeophysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesCalibrationddc:53014. Life underwater010306 general physicsAbsorption (electromagnetic radiation)InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationRemote sensingPhysicsOptical properties010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsIceCube; Optical properties; Photon propagation; South Pole iceSouth PoleiceInstrumentation and Detectors (physics.ins-det)Charged particleData setPhoton propagationAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The 1.4 mm core of Centaurus A: First VLBI results with the South Pole Telescope

2018

Centaurus A (Cen A) is a bright radio source associated with the nearby galaxy NGC 5128 where high-resolution radio observations can probe the jet at scales of less than a light-day. The South Pole Telescope (SPT) and the Atacama Pathfinder Experiment (APEX) performed a single-baseline very-long-baseline interferometry (VLBI) observation of Cen A in January 2015 as part of VLBI receiver deployment for the SPT. We measure the correlated flux density of Cen A at a wavelength of 1.4 mm on a $\sim$7000 km (5 G$\lambda$) baseline. Ascribing this correlated flux density to the core, and with the use of a contemporaneous short-baseline flux density from a Submillimeter Array observation, we infer …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Smithsonian institution010308 nuclear & particles physicsAstronomyAstrophysics::High Energy Astrophysical PhenomenaCentaurus AAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSouth Pole TelescopeSpace and Planetary Science0103 physical sciencesVery-long-baseline interferometryAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct